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A numerical scheme for computing non-stationary spatially periodic capillary-gravitational waves is 

presented. The use of an equation for the curvature of a curve changing with time obtained in the 

present paper makes it very different from the existing methods of boundary integral equations [l, 21. 

The method is very accurate and efficient. Test results are presented along with computations of the 

collapse of a wave as the depth changes and jet formation for large-amplitude oscillations of a liquid. 

1. THE BOUNDARY-VALUE PROBLEM FOR THE VELOCITY FIELD POTENTIAL 

WE INTRODUCE a Cartesian system of coordinates x, y with the vertical y axis pointing upwards. We can 

assume without loss of generality that the length of a wave period equals 2~ and the acceleration due to 

gravity is equal to unity. 

Let x(&s), y(f, S) be the parametric equation of the profile L of one wave period at time t, where s is the 

natural parameter (a%* = ti +dy*, 0~ s < l(t), 1 (t) being the length of one wave period), and let the 

unperturbed wave surface and the bottom surface be defined by the equations y= 0 and y = -h, 
respectively. It is always assumed that the normal vector is directed into the liquid. 

Thii being the case, the velocity field potential 0 satisfies Laplace’s equation in the domain fA of the 

flow, as well as the following periodicity condition, the condition at the bottom, and the dynamic and 

kinematic conditions on the free surface L 

v’o = 0, Q(X + 2% Y I= w, Y 1, 9-I -0 
an F_-h (1.1) 

a’@ i 
;+ p,@l’+y-0k=0, 

aa ay ax 
y-&- =v- Z$ -- - on L 

at as 
(1.2) 

Here Q is the surface tension, k is the curvature, and v is the component of the velocity of liquid 

particles in the direction of the normal vector n directed into the liquid. By d’ldt we understand the 
partial time derivative with the Cartesian coordinates x and y fixed. 

Problem (l.l), (1.2) defines the velocity field potential 0, provided that the motion of the profile of the 

capillary-gravitational wave on the surface of a liquid of finite depth is known. 
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2. THE PARAMETRIC EQUATION OF THE FREE SURFACE 

The profile of the free wave surface, which changes with time, will be described by the natural equation 
k = k(t, s), where k is the curvature of the curve and s is the natural parameter (the arc length relative to a 
fixed point). then the radius vector r(x, y) and the x, y coordinates of the wave profile can be found by 
integrating the system of equations 

aelas = k, arias =r (2.1) 

The unit vector r parallel to the tangent line to the wave profile has components cos 0 and sin 8 where 0 
is the angle between the tangent line and the horizontal axis x. 

It is convenient to express the natural parameter s in terms of a parameter z changing within fixed 
time-independent limits over one period 

ds = l(t)f(z)dz, 0 < z < 1 ( jf(z)dz = 1 ) (2.2) 

where 1 is the length of one wave period, so that f( z) satisfies the above condition in parentheses. 
It follows that the wave profile is determined by the following parametric equation: r = r(z, t). 
If points (markers) are placed on the wave profile at zi = i/N (i = 1, 2, . . . , N) with a constant step 

L\z = l/N in z, then the distance between them can be determined from (2.2) to be Ar = If(z,)Az,. It follows 

that f( z) is the inverse of the density of markers. 
We assume that f( z) is independent of time. The ratio of the distances between the points will therefore 

be preserved in time. Such a distribution of markers was apparently first proposed in [2]. The later paper 
[3] involved the same distribution of markers and confirmed the stability of the numerical schemes. 

3. EQUATION FOR THE CHANGE OF CURVATURE 

Let v(t, z) and u(t, z) be the components of the velocity of markers, v being the component normal to 
the wave profile and I( the tangential component. Then 

adat = TU - w (3.1) 

where v is the vector with components -sin 8, cos 0 perpendicular to r. We express the change of 
curvature with time in terms of u and v. To this end we change from s to z in (2.1) with the aid of (2.2) 

arlaz = df (3.2) 

It follows from (3.1) and (3.2) that 

ir’rjataz = a(~ - v&az = a(dfyat = aQ/azat (3.3) 

We use the formulae 

_=*ae av a? a8 al -= -_=*.E_ 
az az ’ az 

--T -, 
az at at 

for the derivatives of r and v with respect to z and t and substitute them into (3.3). We then obtain a 
vector equation, which implies the two scalar equations 

a0 u ae I au ;+“;zf~l _=____ _ 
dt ’ at If az If a.2 



Computation of non-stationary waves 731 

Differentiating the second equation in (3.4) with respect to z and setting 

K=kl, v = VII, II = UJI, Mlaz=fkl=fK, 

we obtain the desired equation 

(35) 

afk: = a ufc - avIa 

at dz f (3.6) 

for the change in the curvature of the profile. Equation (3.6) has the divergent form, suitable for con- 
structing a numerical scheme conservative with respect to flu. 

4. EQUATION FOR THE ELEMENT OF LENGTH AND TANGENTIAL VELOCITY 

Using the substitution (39, the first equation in (3.4) can be represented in the form 

!! = ‘F $_ fKV(z) 
az (4.1) 

Integrating equation (4.1) with respect to z from 0 to 1 and using the periodicity of V(z) and the 
condition in parentheses in (2.2), we get 

- - = ;fKV(z’)dz’ 
1 al 

ldt o 

Integrating (4.1) with respect to z using (4.2), we obtain the expression 

II = U, + ; (f(z’ 1) fK V(z” )dz” - fK V(z’)) dz’ (; Udz = 0 j 
0 0 0 

for the tangential velocity. The arbitrary constant U,, should be computed 
parentheses. 

The equation 

ids= (kv+ $ds 

(4.2) 

(4.3) 

from the condition in 

(4.4) 

for the variation of the arc length element ds (the distance between markers) in time is interesting. The 
first term defines the variation of a!s due to the motion of markers with velocity u in the normal direction. 

The second term defines the increment of ds due to the motion of markers with various velocities u in the 

tangential direction to the curve. 

At the same time, (2.2) implies that the variation of the distance between markers is proportional to the 
length of the profile 

a(ds)/at = (1-‘dl/dt)ds (4.5) 

The equation following from (4.4) and (4.5) is equivalent to Eq. (3.4) already obtained, which defines 
the velocity of motion of the markers in the tangential direction to the curve. 
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5. EQUATION FOR THE POTENTIAL ON THE FREE SURFACE 

Using (2.2) and (3.9, we express the partial derivative d’/& with x and y fixed in terms of the 

derivative dldt for constant z 

a’Q aQ aQ aQ aQ u aQ 
-= __-_u----u-= --- -_ v=/= 

at at as an at f a2 

Then the dynamic boundary condition (1.2) on the free surface can be represented as 

aQ 
2 

_= 
at 

+y+LI(f I!$ _I_$ ,_);, +!E 

lf 
(5.1) 

This equation defines the potential on the wave profile as a function 0((t, z). To close the system of 
equations it is necessary to obtain an expression for the velocity V(t, z). 

6. EVALUATION OF THE NORMAL VELOCITY FROM THE POTENTIAL ON THE 
FREE SURFACE 

The stream function Y is a harmonic function in the domain of the flow of the liquid and satisfies the 

condition ~(x, 4) = Y,, = wnst at the bottom. It can be shown that the values Y(Q) and 0(Q) of the 

stream function and the potential on the free surface are connected by the linear relation 

- L (i+‘@> Q') $ (P’ ) + N’(8’ ) - *(Q )) ‘; (Q'))ds' = n(w(Q) - qh) (6.1) 

where W( Q, Q’) is Green’s function for the Dirichlet problem in the domain of the flow. Integration is 
carried out over the wave profile L , Q’(x’, y’) is the integration point belonging to L , ds’ is the element of 
the arc at Q’, and Q(x, y) is a fixed point. The function W( Q, Q’) has the form 

W(Q. Q') = IV@, y, x’, y’) = f In 
cc - cosx 

, E=e 
-(y+y’+2h) 

1 - 2Ecosx + E’ 
(6.2) 

F=x’_x, y=y’_y (6.3) 

7. NUMERICAL DIFFERENTIATION AND INTEGRATION FORMULAE 

Let F(z) be a function of period 1 represented by a cubic spline 

Pi(Z) = Fi-141 + Ffl, + ai- + %44 (7.1) 

in the interval zi_i < z c zi, z, = il N (i = 1, 2, . . . , N), where 4 are the values of F(z) at z = zl and q, are 

the following cubic polynomials of X = N(z - z,_,), where 0 c X < 1 

ql=l-x. 49=x 4s = -(X’ - 3x’ + 2X)/6, q, = (X’ - X)/6 

The values a, can be found by the pivotal condensation method from the conditions of continuity for 
the first and second derivatives of the spline at the mesh nodes z = z, and the periodicity condition. 

The differentiation and integration formulae can be expressed in terms of the coefficients of a, 

(7.2) 



Computation of non-stationary waves 

4 
/ F(z)&= 

3-l 
&+I + 4-1 - &+1+al-1)) 

Formula (7.2) is accurate to within W3 and (7.3) is accurate to within IV. 
The formula for integrating over one period that follows from (7.3) has the form 

733 

(7.3) 

(7.4) 

The coefficient of the remainder RN in (7.4) is eight times smaller compared with the remainder in 

Simpson’s formula. 
To integrate periodic functions with a logarithmic singularity one can obtain the following quadratic 

formula for an even number N = 2M of markers 

N 

0 
Z u(i-j)Fj 

j=l 

M-l 1 (7.5) 
(ln2+ X -cos(2nj 

j=l i 

Formula (7.5) is accurate for all trigonometric polynomials of order N. 

8. APPROXIMATION OF THE INTEGRAL EQUATION FOR THE STREAM FUNCTION 

Using the quadrature formulae (7.4) and (7.5), one can obtain the following approximation of Eq. (6.1) 

N 
z (Aij 

I=1 
E + Bij*j)" Z(*f - *Id 
azj 

(8.1) 

Aij a -+-WCq,Y~,x~uij~+8li -ii). i#j 

B(m) = - lnlsinn ” 
N 

I +Nu(m). m > 1 

1 1 
Ajj=- - ( -_In 

I’F (Zil 

N 2 2n*(l - e-wwo)~ ) - a(o) 
(8.2) 

aw 
Bii' - ‘tZ sin6j - -cosflj), i+j, Bff” - ZBf& 

i ayi Mi 
(8.3) 

The matrix coefficients I&, are fairly small on the free surface, and they are identically equal to zero on 

the free surface of the form y = 0. Thus, iterative methods can be used to determine Y from (8.1). One or 

two iterations are usually sufficient to compute non-stationary waves. 
The component V of the velocity normal to the wave profile can be determined by differentiating 

v = Q'f,_ m/a2 (8.4) 

The accuracy of the computation of the stream function Y and the rate of convergence of the method 
can be verified by the following calculations. From the exact solution Y =sin(x)sh(y+h) of the Laplace 

equation on the curve x=2xz, y=sin(2lrz) we compute the exact values iQ’ldz=-f(z)JYl& and 
substitute them into (8.1). The approximate values Yi obtained by solving the system of equations (8.1) 
are compared with the exact values of the stream function Y, = sin(2~zi~h(s~(2~z~)+~). 
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As a function of N, the relative error s(N) = max I Y - ‘Pa, I /max I Y i decreases for h = 100 as follows: 
-e(g) = 10-3, e(l2) = 7 x lOa, r(16) = 3x 10”. For h = 1.5 we have s(g) = W, e(12) = 2 x lW, 426) = 9 x W’. 

9. THE COMPLETE SYSTEM OF EQUATIONS 

I.& us state the finaf system of equations describing the time evolution of the wave 

a# i ao 1 qX 
;’ - _A.,_ --) +---- 

P f az Y 
I 

0 = e. t ffkdz', x = x,, + if fcosedz’, y = yQ + I;fsinedz’ 
0 0 0 

The matrices Aii and I$ can be computed from (8.2) and @.3). The ~~~egratio~ constants U,, @,, x,, 
y. and t can be found from the fofiowing requirements. The periodicity conditions must be satisfied 

exactly: u(z+I)= V(z), @(r+ l)=@(t), y{rcl) =y(z), and x(z+l)=n(z)+2~; the functions V(z) and Y(Z) 

must satisfy the conditions 

The fourth and fifth equations in (9.1) can be approximated by a system of differential equations of 

order 2N and can be solved by the Adams method of order four, At the initial instant the values ki and 
0, of the curvature and potential are given at N points lying on the wave surface. The distances between 
the markers are defined by the function f( z). It is advisable to define f( z) in such a way that the maximum 
point lies in the vicinity of the largest curvature of the wave profiie. 

10. FORMULAE FQR CHANGING TO A SYSTEM OF COORDINATES MOVING AT 
CONSTANT VELOCITY c 

When ~rn~ut~g travelhng non-sta~io~a~ waves it proves convenient to change to a moving system of 

eoordiiates. To this end it suffices to substitute 

v = v’ + c (iafyl ay/az, u = W + c(Pfp ax/at (10.1) 

into Eq. (.%I), The parameter c is convenient for computing breaking waves. A suitabLe value of c can be 
chosen by requiring that the minimum of AZ) should lie at the point of maximum curvature of the wave 
profile. The highest density of markers will then be found in the neighbourhood of that point. 



Computation of non-stationary waves 

11. TESTING THE NUMERICAL METHOD OF 
NON-STATIONARY WAVES 

735 

COMPUTING 

The accuracy of the method can be checked for periodic standing waves, for which we [4] obtained 

solutions expressed as expansions with respect to a small parameter, namely, the save amplitude a. The 
solutions were obtained using the REDUCE analytic computation system [5]. Analogous expansions 

were presented in [6,7]. One can represent the total wave energy E, the potential energy E,(cur) and the 

equation for the wave profile y(st, x) in this way, where a, is the angular frequency of oscillations. In 
particular, at the instants of time wtl = z/2 and rot2 = a we obtain 

E#rfZ) = E = f - 0.1026la‘ + . . . ) 
Ep(O) = $W = -(O.O2OS4u~ + ._* 1 

2 

41 
Y(O, n) = Y&, n) = - P’ - 0.12983d + . . . 

336 

(11.1) 

to within a’. 

1 19 
y(*/2, n)=a + -a’ - - r;* + 0.041220* +. . . 

2 112 

1 11 
w = 1 - - aa + - a4 - 0,004492a6 + . . , 

8 256 

To estimate the accuracy and convergence of the numerical method, imputations of a standing wave 

were made for amplitudes a= 0.2 and a=0.3. (For a=0.3 the order of the remainders in (11.1) is 

approximately lo”.) In Table 1 the numerical results are compared with the values of the corresponding 
quantities obtained from (11.1). Since the kinetic energy is equal to zero for the most-developed wave, 
E&/2)= E&v/2). 

12. EXAMPLES OF THE COMPUTATIONS OF WAVES 

Compu~tions for the problem of a breaking wave in deep water when the depth changes to h = 1 and 
for the problem of forming a cumulative stream in the case of periodic standing oscillations of a liquid in 

a tank have been carried out. 
The collapse of a wave was computed as follows. The profile of a progressive wave of given finite 

amplitude in a heavy liquid of given depth was computed using the scheme presented in [8]. 

TABLET 

imputation based cm 
formulae 01.11 

Error of the numerical solution 

Quantity 
. I 

a = 0.2 a = 0.3 
0 = 0.2 0 = 0.3 

N=l) N= 32 N=8 N = 32 

Ep“p(“l2) 0.061612 0.135414 7x10-’ 2x10-* 1 X10”’ 5x10-‘ 
vOd2,n) 0.219711 0.343656 6x10-’ 2x10-s 1 x lo-’ 4x10-* 
E(n) 0.061611 0.135414 3x10.-’ 9x10-7 4x10-5 1 x10-* 
~$.I(@ 8 x10-’ 215x10-* 7x10-’ 1 x10-’ 4x lo-’ 2 x10-* 
Y Oh =I, 1.9x10-4 8.9x10-* 1x10-’ 2x10-s 3 x10-a 7 x10-5 
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3 
4 

-a5 
-z/3 u z/3 x z 

F10.2 

All the resulting wave characteristics (velocity of propagation, energy and momentum) were compared 

with the corresponding results in [9] obtained by the series summation method. The results were 
consistent to within all significant digits given in [9]. The resulting profile and the velocity field were then 
taken as the initial data, and the variation of the wave profile with time was computed for a liquid of 
different depth. The computation was carried out using the method proposed in the present paper. 

In Fii. 1 the dashed line represents the profile of the progressive wave with amplitude a = 0.406 in a 

liquid of infinite depth corresponding to [9]. The solid line represents the profile of a breaking wave when 
the depth changes to h = 1. 

Similar breaking waves in deep water subject to a variable wind load were considered in [lo]. 

In the second example a stationary sinusoidal profile of amplitude a = 0.5 is given at t = 0. The depth is 

infinite. In the linear approximation this initial condition corresponds to a standing periodic wave. 

Because of non-linearity, a cumulative stream is formed after several periods. the free surfaces at times 
t = 13.5; 14.5; 1%; 16.3 are shown in Fig. 2 (curves l-4 are symmetrical about the axis x = 0). 
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